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A distributed transfer function synthesis is developed for modelling and analysis of rotor
systems assembled from multiple flexible and rigid components. The method delivers highly
accurate and closed-form analytical solutions, and is capable of treating non-self-adjoint
effects, general boundary conditions and multi-body coupling. It is shown that the proposed
method provides a useful analysis tool for many problems in rotor dynamics.
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1. INTRODUCTION

Complex rotor systems have broad industrial applications, such as steam and gas turbines,
turbogenerators, reciprocating and centrifugal compressors, internal combustion engines,
and grinding and milling machines. Flexible rotating shafts are employed in those
machines for efficient power transmission, high speed transportation, or cost-effective
operation. The vibration of those flexible components is therefore a major concern in
optimal design of complex rotor systems.

The vibration of flexible rotating shafts has been extensively studied in the past [1–8].
Various numerical methods of analysis have been developed, including the Rayleigh–Ritz
method [4], direct stiffness method [6], assumed modes method [9], Galerkin method
[10, 11], modal synthesis method [12], transfer matrix method [5, 8], and finite element
methods [13–15]. Parallel to numerical methods, analytical techniques have also been
developed by many researchers. The classical boundary value method is applied to study
the natural frequencies and normal modes of rotating Timoshenko beams [16, 17], and the
critical speeds of rotating flexible shafts [18, 19]. A generalized modal analysis based on
a state–space formulation provides the closed-form transient response of a rotating flexible
shaft under various excitations [20]. A generalized displacement method is adopted to
estimate the eigensolutions of a rotating stepped beam [21]. Transfer matrix analysis using
distributed elements yields the steady state response of stepped flexible rotors [5], and a
rotating Timoshenko beam carrying rigid thin disks [22].

Although the finite element method has been a standard structural analysis tool,
analytical methods are always desirable because they deliver accurate results, are
numerically efficient, and provide deep physical insight into the problem. This is especially
true for rotor systems with extremely flexible rotating shafts, as has been noted by many
researchers [1, 3, 5, 7]. However, most analytical methods are only valid for fairly simple
rotor systems. Exact and closed-form analytical solutions for multi-body, branched flexible
rotor systems are not available.
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The objective of this study is to develop a closed-form analytical solution method,
namely the Distributed Transfer Function Synthesis (DTFS), for accurate modelling and
dynamic analysis of complex flexible rotor systems. The concept of distributed transfer
functions was introduced by Butkoviskiy [23], and has been applied to non-rotating flexible
structures [24, 25]. The current investigation is not a simple extension of the previous
distributed transfer function modelling; it deals with several practical and difficult issues in
rotor dynamics, including non-self-adjoint effects of gyroscopic, damping and circulatory
forces, coupling of rotating flexible shafts and lumped components, unbalanced masses,
whirling motion, critical speeds, and anisotropic bearings/supports. These issues
distinguish the modelling and analysis of a complex flexible rotor system from that of a
non-rotating structure, and have limited the utility of many conventional solution
methods. Obviously, the development of a closed-form analytical method for complex
flexible rotor systems is not a trivial task.

The proposed DTFS is unique in that it combines the high accuracy of analytical
solutions, and the versatility of finite element analysis in treating multi-body coupling and
general boundary conditions. For instance, consider the hypothetic rotor system in
Figure 1, which is an assembly of multiple flexible rotating shafts with mounted rigid disks,
constrained by bearings, and coupled by gears and inter-shaft bearings. In the DTFS, the
rotor system is first decomposed into a number of distributed and lumped components by
nodes at which the components are inter-connected. The response of each flexible shaft
component is then expressed by exact and closed-form distributed transfer functions in
terms of its nodal displacement parameters. As such, a multi-body, branched rotor system
is conveniently assembled from these components by imposing force balance at the nodes,
leading to a global dynamic equilibrium equation. Solution of the dynamic equilibrium
equation yields accurate prediction of the system response at every point.

The DTFS is different from existing methods in several aspects. First, without
discretization or approximation, the DTFS delivers exact and closed-form solutions for
a large class of complex flexible rotor systems. Second, unlike standard series solution
methods, the DTFS does not need to select specific comparison or admissible functions
for particular boundary conditions and shaft models. Third, compared to the transfer
matrix method, the DTFS is more convenient in dealing with multi-body and branched
structures, and avoids the difficulty in determining transfer matrices for systems with
non-self-adjoint gyroscopic, damping and circulatory forces. Additionally, the DTFS-
based analysis involves a minimum number of unknowns because a flexible shaft
component is not to be further divided into smaller elements. These features make the
proposed method attractive and practical in engineering analysis.

The remainder of the paper is arranged as follows. The transfer function modelling of
distributed and lumped components is given in section 2 and the distributed transfer
function synthesis is presented in section 3. The DTFS is applied to various dynamic
problems in section 4, and illustrated by three numerical examples in section 5.

2. MODELLING OF DISTRIBUTED AND LUMPED COMPONENTS

A complex rotor system is composed of multiple distributed and lumped components
such as flexible rotating shafts, rigid disks, bearings, and gears; see Figure 1. In this section,
these components are modelled by transfer functions in the Laplace transform domain.

2.1.    

For the uniform flexible rotating shaft in Figure 2, its transverse displacements u(z, t)
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Figure 1. A hypothetic complex rotor system: C1—coupling of nodes 4 and 5 by the inter-shaft bearing;
C2—coupling of nodes 7 and 9 by the gear pair.

and v(z, t) described in a fixed co-ordinate system oxyz are governed by the partial
differential equations

EI
14u(z, t)

1z4 −2rIV
13v(z, t)
1z2 1t

− rI
14u(z, t)
1z2 1t2 + rA

12u(z, t)
1t2 = fx (z, t), (1a)

EI
14v(z, t)

1z4 +2rIV
13u(z, t)
1z2 1t

− rI
14v(z, t)
1z2 1t2 + rA

12v(z, t)
1t2 = fy (z, t), 0E zEL, (1b)

with arbitrary boundary conditions specified at its two ends, nodes i and j. Here r, E, A,
I and V are the density, Young’s modulus, cross-section area, moment of inertia and
rotation speed of the shaft, respectively, and fx (z, t) and fy (z, t) are the external forces.
The internal shear forces and bending moments of the component are given by [26]

Fx (z, t)=−rI
13u(z, t)
1z 1t2 −2rIV

12v(z, t)
1z 1t

+EI
13u(z, t)

1z3 , (2a)

Figure 2. A uniform flexible rotating shaft.
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Fy (z, t)=−rI
13v(z, t)
1z 1t2 +2rIV

12u(z, t)
1z 1t

+EI
13v(z, t)

1z3 , (2b)

Mx (z, t)=EI
12v(z, t)

1z2 , My (z, t)=−EI
12u(z, t)

1z2 . (2c, d)

Laplace transform of equations (1) with zero initial conditions gives

EI
14ū(z, s)

1z4 −2rIVs
12v̄(z, s)

1z2 − rIs2 12ū(z, s)
1z2 + rAs2ū(z, s)= f�x (z, s), (3a)

EI
14v̄(z, s)

1z4 +2rIVs
12ū(z, s)

1z2 − rIs2 12v̄(z, s)
1z2 + rAs2v̄(z, s)= f�y (z, s), (3b)

where the over-bar denotes Laplace transformation with respect to time, and s is the
complex Laplace transform parameter. Equations (3) are cast into the spatial state–space
form

1

1z
h(z, s)=F(s)h(z, s)+ y(z, s), 0E zEL, (4)

where the state–space vector h(z, s) and the force vector y(z, s) are given by

h(z, s)=6ū 1ū
1z

12ū
1z2

13ū
1z3 v̄

1v̄
1z

12v̄
1z2

13v̄
1z37

T

, (5a)

y(z, s)= {0 0 0 f�x /EI 0 0 0 f�y /EI}T, (5b)

and F(s) is an eight-by-eight state–space matrix consisting of the shaft parameters and s.
Also, the boundary conditions can be written in the matrix form

Mb h(0, s)+Nb h(L, s)= g(s), (6)

where g(s) is the vector of boundary disturbances, and the entries of the matrices Mb and
Nb can be easily changed to assign different boundary conditions. The solution to the
state–space equation (4) with the boundary conditions (6) is [27]

h(z, s)=g
L

0

G(z, j, s)y(j, s) dj+H(z, s)g(s), (7)

where the distributed transfer functions G(z, j, s) and H(z, s) of the shaft component are
in the exact and closed form

G(z, j, s)=6H(z, s)Mb e−F(s)j,
−H(z, s)Nb eF(s) (L− j),

jE z,
je z.

(8a)

H(z, s)= eF(s)z(Mb +Nb eF(s)L)−1. (8b)

Define the displacement vector and internal force vector of the shaft by

a(z, s)= {ū(z, s) u�x (z, s) v̄(z, s) u�y (z, s)}T, (9a)

and

s(z, s)= {F�x (z, s) M�x (z, s) F�y (z, s) M�y (z, s)}T, (9b)
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where u�x (z, s)=−1v̄/1z and u�y (z, s)= 1ū/1z are the rotation angles of the shaft about
the x- and y-axes, and the elements of s(z, s) are the Laplace transforms of the internal
forces in equations (2). It follows from equations (2) and (9) that

a(z, s)=Ea h(z, s), s(z, s)=Es (s)h(z, s), (10a, b)

where Ea is a 4×8 constant matrix whose elements are 0 and 21, and

0 −rIs2 0 EI 0 −2rIVs 0 0

0 0 0 0 0 0 EI 0
Es (s)=G

G

G

K

k
0 2rIVs 0 0 0 −rIs2 0 EI

G
G

G

L

l

.

0 0 −EI 0 0 0 0 0

One key step in the distributed transfer function modelling is to express the response
of the shaft by its displacements at nodes i and j. Define the nodal displacements vectors

ai (s)= a(0, s), aj (s)= a(L, s). (11)

Treat the nodal displacements as boundary disturbances by setting

g(s)=0ai (s)
aj (s)1, (12)

and form appropriate boundary matrices Mb and Nb in equation (6). By equations (7), (10)
and (12), the displacements and internal forces of the shaft are expressed by

0a(z, s)
s(z, s)1=$ Ea

Es (s)% g
L

0

G(z, j, s)y(j, s) dj+$ Ea

Es (s)%H(z, s)0ai (s)
aj (s)1. (13)

Hence, the displacements and internal forces at every point of the shaft are completely
determined once the nodal displacements are known.

The above modelling technique is not limited to Euler–Bernoulli beams. Rayleigh and
Timoshenko beam models counting on rotary inertia and shear deformation can also be
easily cast into the same state–space form, equation (4), and this is done by simply
changing the entries of the matrices F(s), Mb and Nb . Also, torsional and longitudinal
deformations, internal/material damping, distributed constraints (e.g., elastic foundation)
can be modelled without any complication in analysis. Indeed, for different rotating shaft
models under arbitrary loads and boundary conditions, the distributed transfer function
modelling has the same formula, equation (7), and does not require specific derivations.

2.2. -   

If the geometric and material parameters of a flexible shaft are dependent upon the
spatial co-ordinate z, the state–space matrix in equation (4) becomes a function of z,
namely, F=F(z, s). In this case, the distributed transfer function solution, equation (7),
is still valid if the exponential matrix eF(s)z in equation (8) is replaced by the fundamental
matrix F(z, s), which is the solution of

1

1z
F(z, s)=F(z, s)F(z, s), F(0, s)= I. (14)
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Figure 3. Rigid rotating disks: (a) thin and (b) thick disk.

One accurate and efficient way to determine F(z, s) is the step function approximation
given in reference [28]. The non-uniform shaft is approximated by ns serially connected
uniform shaft segments Dk =(zk−1, zk ), k=1, 2, . . . , ns , where the nodes zk are such
that 0= z0 Q z1 Q · · ·Q zns =L. Within the kth segment, the fundamental matrix is of the
form

F(z, s)= eFk (s) (z− zk−1)Dk , z $ Dk , (15)

where Fk (s)=F(zk−1/2+ zk /2, s), and Dk is a constant matrix to be determined. At node
zk , where the segments Dk and Dk+1 are inter-connected, force balance and displacement
continuity leads to

F(zk +0, s)=Tk (s)F(zk −0, s), (16)

where Tk (s) is a constant matrix consisting of the geometric and material coefficients of
the shaft. Through connection of all the segments, the matrices Dk are obtained as

D1 = I; Dk = t
k−1

j=1

Tj (s) eFj (s) (zj − zj−1), k=2, . . . , ns . (17)

Thus, by equations (15) and (17), F(z, s) at any z is completely determined. The response
of the non-uniform shaft can then be estimated by equations (7) and (8), with eF(s)z replaced
by F(z, s). Moreover, a response-nodal displacement relation similar to equation (13) can
be established.

The above modelling is exact if the physical system in consideration is a stepped flexible
shaft.

2.3.   

In Figure 3(a) a rotating rigid disk of negligible thickness is subject to external forces
Fx and Fy at its center and external force moments Mx and My (not shown in the figure).
The displacements u and v at the disk center and the disk rotations ux and uy are governed
by

Fx (t)=mD ü(t), Fy (t)=mD v̈(t), (18a, b)

and

Mx (t)= IDx u� x (t)+ IDz Vu� y (t), My (t)= IDx u� y − IDz Vu� x (t), (18c, d)
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where mD is the disk mass, and IDx and IDz are the mass moments of the disk about the
x- and z-axes. Laplace transform of equation (18) leads to the force-displacement relation
for the disk,

K L K L K L K LF�x MD s2 0 0 0 ū ū
G G G G G G G GM�x 0 IDx s2 0 IDz Vs u�x u�xG G G G G G G G

F�y
=

0 0 MD s2 0 v̄
=Kd (s)

v̄
.

(19)

G G G G G G G G
M�y 0 −IDz Vs 0 IDx s2 u�y u�yk l k l k l k l

In Figure 3(b) a rotating rigid disk of thickness h is connected to two flexible shaft
segments at two sides z= z1 and z2. The thick disk can also be used as a model for rigid
rotors. In the Laplace transform domain, let the displacements and internal forces of the
shafts at the disk-connecting points be ū(zi , s), v̄(zi , s), u�x (zi , s) and u�y (zi , s), and F�x (zi , s),
F�y (zi , s), M�x (zi , s) and My (zi , s), i=1, 2. Force balance of the disk yields

F�x (z1, s)+F�x (z2, s)=mD 0s2ū(z1, s)+
h
2

s2u�y (z1, s)1, (20a)

F�y (z1, s)+F�y (z2, s)=mD 0s2v̄(z1, s)−
h
2

s2u�x (z1, s)1, (20b)

M�x (z1, s)+M�x (z2, s)+
h
2

F�y (z1, s)−
h
2

F�y (z2, s)= IDx s2u�x (z1, s)+ IDz Vsu�y (z1, s), (20c)

M�y (z1, s)+M�y (z2, s)−
h
2

F�x (z1, s)+
h
2

F�x (z2, s)= IDx s2u�x (z1, s)− IDz Vsu�x (z1, s), (20d)

where the parameters mD , IDx and IDz have the same meaning as those in equations (18).
According to equations (2), the internal forces can be expressed in terms of the shaft
displacements and their spatial derivatives. In other words, the displacements and internal
forces at z= z2 are related to those at z= z1 by

$s(z1, s)
s(z2, s)%=−Kd (s)$a(z1, s)

a(z2, s)%, (21)

where a and s have been defined in equations (6), and Kd (s) is a matrix consisting of the
coefficients in equations (2) and (20).

2.4. 

Bearings and seals are commonly modelled by a set of linear springs and dampers, as
shown in Figure 4(a) where kxx , kxy , kyx and kyy are spring coefficients and cxx , cxy , cyx and
cyy are damping coefficients. For such a model, the s-domain constraint forces applied to
the connecting shaft by the bearing are expressed by

fc (s)=−Kb (s)a(s), (22)

where

F J F J K LF�x ū kxx + cxx s 0 kxy + cxy s 0
G G G G G GM�x u�x 0 0 0 0g h g h G Gfc (s)=

F�y

, a(s)=
v̄

, Kb (s)=
kyx + cyx s 0 kyy + cyy s 0

,
G G G G G G

M�y u�y 0 0 0 0f j f j k l
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with ū, v̄, u�x and u�y being the transverse displacements and rotations of the shaft at the
bearing location. The modelling herein is also valid for fluid film bearings whose stiffness
and damping coefficients are functions of the rotating speed V [5].

The bearing model shown in Figure 4(a) only describes the radial forces of the bearings.
This is because the shaft model, equations (1), is a Euler–Bernoulli beam, i.e., infinite
torsional stiffness has been assumed. The Kb (s), however, can be modified to include
couples or tangential forces of the bearings. In that case, torsional deformation of the
flexible shaft should also be modelled, as discussed at the end of section 2.1.

In Figure 4(b), two co-axial rotors are linked by an inter-shaft bearing, where the inner
and outer rotors may have different rotation speeds. Let ainner (s) and aouter (s) be the vectors
of the displacements of the inner and outer shafts at the bearing–shaft connection
locations. By the bearing model given in Figure 4(a), the vector of the constraints forces
that are applied to the inner shaft by the bearing is of the form

fc (s)=−Kb (s) (ainner (s)− aouter (s)), (23)

where Kb (s) has been given in equation (22). The constraint forces applied to the outer
shaft by the bearing are expressed by −fc (s).

2.5. 

Four flexible shaft segments (I, II, III and IV) are coupled by a pair of gears; see
Figure 5(a) where 1, 2, . . . , 6 are node numbers, and aj (s) is the nodal displacement vector
at node j. A free-body diagram of the gears is shown in Figure 5(b), where s−

2 (s) and s+
2 (s)

represent the internal forces applied to the upper gear by segments I and II, respectively,
s−

5 (s) and s+
5 (s) the internal forces applied to the lower gear by segments III and IV, and

qc (s) describes the action and reaction forces between the two gears. The aj (s), s2
2 (s) and

s2
5 (s) are estimated by equation (13).
Physically, the gear coupling also causes action and reaction couples in the axial

direction. The couples are ignored in qc (s) because of the Euler–Bernoulli beam model of
the shaft segments. Like in the bearing modelling (section 2.4), those couples can be easily
modelled through consideration of the torsional deformation of the shaft segments.

Figure 4. Bearings: (a) a spring-damper model and (b) an inter-shaft bearing linking two co-axial rotors.
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Figure 5. Coupling of flexible shafts by gears: (a) side view and (b) gear interaction.

Force balance on the gears yields

Mg2 (s)a2 (s)= s−
2 (s)+ s+

2 (s)− qc (s), Mg5 (s)a5 (s)= s−
5 (s)+ s+

5 (s)+ qc (s), (24a, b)

where the matrices Mg2 (s) and Mg5 (s) characterize the inertial and gyroscopic effects of
the upper and lower gears, respectively. For the gears being perfectly coupled, their
kinematic relation is

a5 (s)=Cg a2 (s), (25)

where Cg is a non-singular constant matrix. Elimination of a5 (s) from equations (24) and
(25) gives

(Mg2 (s)+Mg5 (s)Cg )a2 (s)= s−
2 (s)+ s+

2 (s)+ s−
5 (s)+ s+

5 (s). (26)

According to equation (13), s−
2 (s) can be expressed by the displacements of segment I at

nodes 1 and 2. Likewise, s+
2 (s), s−

5 (s) and s+
5 (s) are expressible by the nodal displacements

of segments II, III and IV. Hence, substituting equation (13) into equation (26) leads to

s
6

i=1

K2i (s)ai (s)= fT2 (s), (27)

where fT2 (s) is the vector of transmitted forces at node 2, and the stiffness matrices K2i (s)
are composed of the elements of Mg2 (s)+Mg5 (s)Cg and distributed transfer functions of
the shaft segments. It is seen that the gears couple the displacements at all the six nodes.

3. DISTRIBUTED TRANSFER FUNCTION SYNTHESIS

In the previous section, the transfer functions of distributed and lumped components
have been derived. In this section, the complex system is assembled from its components
by the use of these transfer functions.

Assume that the complex rotor system is decomposed into a number of distributed and
lumped components that are inter-connected at n nodes. At node j, flexible shaft
components A (bounded by nodes i and j) and B (bounded by nodes j and l) are
inter-connected; see Figure 6. Also, at the node may be a bearing and a thin rigid disk
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Figure 6. Assembly of components at node j.

(not shown in the figure). The resultant constraint forces of the bearing and disk are
expressed by −Kc (s)aj (s), where aj (s) is the nodal displacement vector of node j, and the
constraint matrix Kc (s) can be obtained from equations (19) and (22). Let sA (s) and sB (s)
be the vectors of the internal forces applied at node j by components A and B, respectively,
and pej (s) the vector of the pointwise external forces at node j. Force balance at the node
gives

sA (s)+ sB (s)−Kc (s)aj (s)+ pej (s)=0. (28)

According to equation (13), the internal forces are of the form

sA (s)=−K(A)
i (s)ai (s)−K(A)

j (s)aj (s)+ f (A)
Tj , (29a)

sB (s)=−K(B)
j (s)aj (s)−K(B)

l (s)al (s)+ f (B)
Tj , (29b)

where the transmitted nodal force vectors f (A)
Tj and f (B)

Tj are derivable from the first term of
equation (13), and the matrices like K(A)

i from the second term. Substituting equations (29)
into equation (28) yields the dynamic equilibrium equation about node j:

K(A)
i (s)ai (s)+ (K(A)

j (s)+K(B)
j (s)+Kc (s))aj (s)+K(B)

l (s)al (s)= f (A)
Tj + f (B)

Tj + pej (s). (30)

If component B is a thick disk, a force-displacement relation similar to equation (29b)
can be derived from equation (21). If at node j an inner rotor is connected to a co-axial
outer rotor by an inter-shaft bearing (Figure 4(b)), the constraint force vector −Kc (s)aj (s)
in equation (28) is replaced by fc (s) in equation (23), in which ainner (s)= aj (s), and as such,
the force balance at the node will involve an additional nodal displacement vector, aouter (s).
If a gear is located at node j, then by equation (27), force balance at the node will involve
the nodal displacements at six nodes. In any of the above cases, the dynamic equilibrium
equation at node j can be written as

Kji (s)ai (s)+Kjj (s)aj (s)+Kjl (s)al (s)+ · · · +Kjm (s)am (s)= qj (s), (31)

where ai (s), aj (s), al (s), . . . , am (s) are all the nodal displacements that are involved in
the force balance at node j, Kji (s) etc. are stiffness matrices derivable from equations like
equation (30), and qj (s) is the resultant of the transmitted nodal forces and pointwise
external forces.
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Force balance at all the n nodes and assembly of the resulting equations yields a global
dynamic equilibrium equation,

K(s)U(s)=Q(s), (32)

where K(s) is the global dynamic stiffness matrix of the complex system composed of
Kji (s), j, i=1, 2, . . . , n, U(s)= {aT

1 (s) · · · aT
n (s)}T is the unknown global nodal

displacement vector, and Q(s)= {qT
1 (s) · · · qT

n (s)}T is the global nodal force vector. In the
above synthesis, no approximation or discretization has been made. Note that the
boundary conditions of the complex rotor system have been automatically imposed at
the component level; see equations (6) and (7). Thus, upon its formation, equation (32)
is ready to be solved.

4. DYNAMIC ANALYSIS

With the distributed transfer function formulation, the solutions to various dynamic
problems of complex flexible rotor systems can be obtained in exact and closed form.

4.1. 

The eigenvalue problem of the complex rotor system, by equation (32), is

K(s)U(s)=0. (33)

The eigenvalues li of the complex system are the roots of the characteristic equation

det K(li )=0, i=1, 2, . . . . (34)

The eigenfunction or mode shape corresponding to the ith eigenvalue li is obtained by
substituting the nontrivial solution U of the equation K(lk )U=0 into equation (13). Note
that equation (13) also gives the modal stresses.

4.2.      

A flexible rotor system has an unbalanced mass mu of eccentricity e at a node. The shaft
rotation induces a centrifugal force at the node whose x- and y-projections are

px =mu e V2 cos Vt, py =mu e V2 sin Vt. (35)

Assume that there are no external loads. Then, the Laplace transforms of px and py are
the only two non-zero entries of the nodal force vector Q(s) in equation (32). Write

0px

py1=Im (x0 eJVt), x0 =mu e V20J11, (36)

where J=z−1. Since, px and py are harmonic excitations, by equation (32), the vector
U(t) of the steady state displacements at all the nodes are of the form

U(t)= Im (J(JV)x0 eJVt), (37)

where J(JV) is obtained from proper partition of the inversed matrix K−1(JV),
corresponding to the positions of p̄x and p̄y in Q(s). The steady state response of a flexible
shaft component is obtained by substituting equation (37) into equation (13):

a(z, t)= Im (A(z, V) eJVt)=AI (z, V) cos Vt+AR (z, V) sin Vt, (38)
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where a(z, t) is the time-domain displacement vector of the shaft component, the complex
matrix

A(z, V)=Ea H(z, JV)p(JV)x0, (39)

AR and AI are the real and imaginary parts of A(z, V), respectively, and the matrix p(JV)
is composed of those columns of J(JV) which are related to the nodal displacements of
the shaft component. The internal forces of the shaft component can be similarly
determined.

4.3.     

Consider the unbalanced flexible rotor analyzed in section 4.2. At point z (either a node
or an interior point of a flexible shaft component), the whirling motion (the transverse
displacements of the rotor geometric center) is described by

0u(t)
v(t)1=$A1

A2

B1

B2%0cos Vt
sin Vt1, (40)

where Ai and Bi are the elements of the matrices AI and AR in equation (38). The whirling
is forward (backward) if the scalar triple product Ve3 . (r(t)×dr(t)/dt) is positive
(negative), where r(t)= u(t)e1 + v(t)e2 is the displacement vector of the shaft geometric
center, and e1, e2 and e3 are the unit vectors of the fixed co-ordinate system oxyz. It follows
that the whirling motion is forward (backward) whirl if A1 B2 −A2 B1 is positive (negative).
This result is in agreement with what is given in reference [12] although the current study
adopts an exact and closed-form PDE model of the complex flexible rotor system for the
first time. Define a whirl direction indicator

C=6sgn (A1 B2 −A2 B1),
0,

for
for

A1 B2 −A2 B1 $ 0,
A1 B2 −A2 B1 =0.

(41)

The whirl direction of the rotor is therefore detected as follows:

forward whirl condition: C=1, (42a)

backward whirl condition: C=−1. (42b)

When C$ 0, the whirl orbit by equation (40) is an ellipse

ax2 +2bxy+ cy2 =1, (43)

where the coefficients a, b and c are determined by

$ab b
c%=$A1

A2

B1

B2%
T

$A1

A2

B1

B2%
−1

=
1

(A1 B2 −A2 B1)2 $ A2
2 +B2

2

−A1 A2 −B1 B2

−A1 A2 −B1 B2

A2
1 +B2

1 %.

When C=0, the trajectory of the rotor at point z becomes a straight line,

A2 x−A1 y=0, for =x =EzA2
1 +B2

1 . (44)

The results obtained in this section differ from the previous ones in that without
discretization and approximation, the whirl direction and trajectory for a complex
rotor system of multiple flexible and rigid components at any location are precisely
predicted.
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4.4.  

The critical speed of a rotor system is a specific rotation speed of the rotor at which
the amplitude of the system dynamic response peaks, or becomes substantially large. In
the following, two types of rotor systems are examined.

4.4.1. Undamped rotor systems
The characteristic equation of a complex flexible rotor system, by equation (33), is

det K(s; V)=0, (45)

where V is a rotation speed parameter indicating that the eigenvalues of a rotor system
are dependent on its rotation speed. Because the rotor system is undamped, its critical
speeds coincide with its natural frequencies [4]. So, the critical speeds are the roots of the
equation

det K(2JV; V)=0, J=z−1, (46)

which is obtained by substituting s=2JV in equation (45). The root +JV (−JV) relates
to forward (backward) critical speed.

4.4.2. Unbalanced rotor systems
The critical speeds of an unbalanced rotor system are determined based on its

steady-state response, equation (40). In this case, the rotor system can have arbitrary
damping. When C$ 0, the geometric center of the rotor system (point z) moves along
the elliptic whirl orbit described by equation (43); the whirl direction is determined by the
conditions (42). The long axis, Am , of the ellipse represents the largest rotor displacement
at point z, which, through co-ordinate rotation, is given by

Am =max{D(u0), D(u0 + p/2)}, (47a)

where

D(u)= {a cos2 u+2b sin u cos u+ c sin2 u}−1/2, u0 = 1
2 arctan (2b/(a− c)),

and the coefficients, a, b and c are given in equation (43). When C=0, the trajectory of
the rotor geometric center is a straight line. In this case, the largest displacement, by
equation (44), is

Am =zA2
1 +B2

1 +A2
2 +B2

2 . (47b)

The critical speeds of the rotor system are the local maximum points of the Am −V curve.

4.5.   

A pointwise external harmonic force of the form

0px

py1=Im (x0 eJvt), x0 =0bx (v)
by (v)1, (48)

is applied at a node, where v is the excitation frequency, and bx (v) and by (v) are complex
and frequency-dependent amplitudes. Note that equation (36) is a special case of equation
(48) if v is replaced by V. Following the steps in section 4.2, the steady state response of
the rotor system at any point is obtained as

0u(t)
v(t)1=$A1

A2

B1

B2%0cos vt
sin vt1, (49)
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Figure 7. A uniform rotating shaft carrying a rigid thin disk.

where Ai and Bi are similar to those in equation (40) although the excitation frequency
v does not have to be the shaft rotation speed V. Following sections 4.3 and 4.4, similar
results about the whirling motion and critical speeds can be obtained.

For spatially distributed harmonic excitations of frequency v, the dynamic equilibrium
equation (32) becomes K(Jv)U(Jv)=Q(Jv). Substituting the nodal displacement vector
U(Jv)=K−1(Jv)Q(Jv) into equation (13) yields an exact and closed-form prediction of
the frequency response of the complex rotor system.

Besides the aforementioned dynamic problems, the distributed transfer function
synthesis is also applicable to stability analysis and vibration control of complex flexible
rotor systems [23]. The DTFS presented herein has two special features. First, without
discretization, the method yields exact and closed-form solutions for various dynamic
problems. Second, the method is convenient and efficient for systematic modelling and
design of multi-body flexible rotor systems.

5. EXAMPLES

5.1.        

A simply-supported, undamped, uniform flexible rotating shaft carries a rigid thin disk;
see Figure 7. The parameters of the rotor system are: L=0·4 m, r=7800 kg/m3,
E=2×1011 N/m2, A=3·142×10−4 m2, I=7·854×10−9 m4, mD =16·47 kg, IDx =
9·427×10−2 kg . m2, IDz =0·1861 kg . m2. The first and second forward critical speeds of
the rotor are calculated by the DTFS using equation (46), and by an N-term Rayleigh–Ritz
model using sine functions. The results are listed in Table 1. It is seen that as the number
of terms N increases, the Rayleigh–Ritz prediction converges (from above) to that by the
proposed DTFS.

T 1

Critical speeds (Vcr,k ) of the uniform flexible shaft–disk system (rad/s)

Vcr,1 Vcr,2

N=2 263·9 323·5
4 263·4 307·9

Rayleigh–Ritz method 6 259·7 307·4g
G

G

G

G

F

f

8 258·2 307·1
10 258·1 306·6
12 257·0 306·5

DTFS 254·1 306·1
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Figure 8. A non-uniform flexible shaft–disk system.

5.2.  -      

In Figure 8, a simply-supported rotor system is composed of two identical tapered
flexible shafts of diameter d=2/25− (4/45)z, 0E zE 0·45, and a rigid thick disk. The
moment of inertia (I= pd4/64) and cross-section area (A= pd2/4) of the shafts are
functions of z, rendering the shafts non-uniformly distributed. Other parameters of the
rotor system are r=1, E=100, mD =3·1416×10−3, IDx =1·0472×10−5, and
IDz =1·5701×10−5. Here, all parameters are dimensionless. According to section 2.2, each
flexible shaft is modelled as a sequence of serially connected stepped shaft segments. The
first three critical speeds of the so-modelled rotor are listed in Table 2, where a fast
convergence of the distributed transfer function prediction is seen. The critical speeds
predicted by 2×9 shaft segments only deviate from those by 2×200 segments by less
than 0·73, 0·33 and 0·74%, respectively.

5.3.     

In Figure 9, two coaxial flexible rotors of different rotation speeds are linked by one
inter-shaft bearing (Bearing 4). On each of the rotors are mountd two rigid thin disks.
This kind of dual system is commonly seen in gas turbines and compressors [5]. In the
literature, dual rotor systems have been studied by the finite element method [4]. In this
example, the DTFS is applied to obtain exact solutions for the dual rotor system.

The rotor system is decomposed into seven flexible shaft segments by nine nodes
z0, z1, . . . , z8 ; see Figure 9. The bearings are modelled in section 2.4, and the inter-shaft
coupling is described in equation (23). The parameters of the rotor system are given in

T 2

Critical speeds (Vcr,k ) of the non-uniform flexible shaft–disk system (ns—number of shaft
segments)

ns Vcr,1 Vcr,2 Vcr,3

2×9 0·6521 6·0548 10·4289
2×18 0·6486 6·0696 10·3721
2×27 0·6479 6·0723 10·3612
2×45 0·6476 6·0736 10·3556
2×100 0·6474 6·0743 10·3531
2×150 0·6474 6·0744 10·3527
2×200 0·6474 6·0744 10·3526
2×250 0·6474 6·0744 10·3526
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Figure 9. A dual flexible rotor system.

Figure 10. Amplitude of frequency response of the dual rotor system: ——, at Disk 2; - - - -, at Disk 4.

Table 3. The first eight eigenvalues of the dual rotor system, calculated by the DTFS, are
given in Table 4. All the modes are stable (Re lk Q 0).

To investigate unbalanced response, assume that an unbalanced mass mu e=1·0 kg . m
is at the location of Disk 2, node z7. Let the rotation speeds of Rotors 1 and 2 be V1 =V

and V2 =1·5V, respectively. Figure 10 depicts the displacement amplitude Am defined in
equation (47a) versus the rotation speed parameter V, at the locations of Disks 2 and 4,
respectively. From the Am −V curves, the first two critical speeds of the rotor system are
identified as Vcr,1 = 765, and Vcr,2 = 1244. The numerical simulation reveals that the whirl
direction indicator C0 1 for any Vq 0. By equation (42a), only forward whirl is excited
by the unbalanced mass.
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T 3

Parameters of the dual flexible rotor system

Node locations (m)
ZXXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXXV

z0 z1 z2 z3 z4 z5 /z6 z7 z8

0·000 0·0762 0·1524 0·2032 0·3556 0·4064 0·4572 0·5080

Flexible rotors
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

V (r.p.m.) r (kg/m3) E (N/m2) A (m2) I (m4)

Rotor 1 10,000 7800 2×1011 7·2975×10−4 4·2373×10−8

Rotor 2 15,000 7800 2×1011 8·9192×10−4 3·5101×10−7

Bearings (kxy = kyx =0 and cxy = cyx =0 for all bearings)
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
kxx (N/m)×107 kyy (N/m)×107 cxx (N/m/s)×102 cyy (N/m/s)×102

Bearing 1 2·63 2·63 2·63 2·63
Bearing 2 1·75 1·75 1·75 1·75
Bearing 3 1·75 1·75 1·75 1·75
Bearing 4 0·875 0·875 0·875 0·875

Rigid disks
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

mD (kg) IDx (kg . m2)×10−2 IDz (kg . m2)×10−2

Disk 1 10·51 4·295 8·590
Disk 2 7·01 3·390 6·780
Disk 3 7·01 2·145 4·290
Disk 4 3·50 1·355 2·710

Backward whirl of the dual rotor system can be excited if the excitation is not ‘‘purely
forward’’. To see this, consider a pointwise external harmonic force of the form

px =v2 cos vt, py =0, (50)

which is applied to node z7. Let the excitation frequency coincide with the rotation speed
of Rotor 1; i.e., v=V1 =V. Assume that the rotor system has no unbalanced mass
(mu e=0), and that the rotation speed of Rotor 2 is V2 =1·5V. Plotted in Figure 11 are
the amplitude Am of the system frequency response and whirl direction indicator C, at node
z7. It is seen that both forward and backward whirls exist. From the Am −V curve, the

T 4

Eigenvalues lk of the dual rotor system (J=z−1)

k lk

1 −4·1750×10−4 + J3·3546×102

2 −1·3513×10−2 + J8·2532×102

3 −2·6300×10−2 + J1·0193×103

4 −4·5998×10−2 + J1·2367×103

5 −6·7111×10−2 + J1·4505×103

6 −1·3393×10−1 + J1·5798×103

7 −1·0851×10−1 + J1·6955×103

8 −1·3709×10−1 + J1·8010×103
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Figure 11. (a) The frequency response amplitude and (b) whirl direction indicator of the dual rotor system,
at node z7.

first five critical speeds of the rotor systems are determined as 453, 765, 1024, 1244 and
1332. The C plot shows that the first, third and fifth critical speeds are backward speeds,
and the second and fourth forward ones. Thus, the backward and forward critical speeds
are in the interlacing relation, Vb

cr,k QVf
cf,k QVb

cr,k+1, where the superscripts b and f denote
backward and forward whirls, respectively.

If the rotor system is asymmetric, backward whirl can be excited by an unbalanced mass.
To show this, change kyy and cyy of Bearing 2 in Table 3 to kyy =2·65×107 N/m and
cyy =2·65×102 N/m/s. All other parameters remain the same. Consider an unbalanced
mass of mu e=1·0 kg . m at node z7. In Figure 12, the Am −V curve of the rotor system
at z7 gives the first five critical speeds: 454, 777, 1032, 1254 and 1381. By equations (42),
it is found that the first, third and fifth critical speeds are backward speeds, and the second
and fourth forward ones.

The whirl orbits of the unbalanced rotor system at node z7 are plotted in Figures 13 and
14, for five different types of Bearing 2 listed in Table 5. In all the cases, the rotation speeds
are chosen as V1 =1000 rad/s=9549 r.p.m. and V2 =1·5V1. Except for the rotation
speeds and the coefficients of Bearing 2, all the other parameters of the rotor system are
the same as given in Table 3. The orbit in Case 1 is a circle due to the symmetry of the
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Figure 12. Amplitude of frequency response of the unsymmetric dual rotor system: ——, at Disk 2; - - - -, at
Disk 4.

rotor system. Because kxx $ kyy and cxx $ cyy in Cases 2 and 3, the orbits become elliptic;
see Figure 13. With the non-zero kxy , kyx , cxy and cyx in Cases 4 and 5, the whirl orbits
not only are elliptic, but also become flat with their long axes titling from the x- or y-axis;
see Figure 14. Moreover, by equations (42), the whirling in Case 1 is forward, and that
in the rest of the cases is backward. Thus, an unsymmetric bearing can greatly affect the
whirl direction and orbit of a complex rotor system.

Figure 13. Whirl orbits of the unbalanced dual rotor system at node z7 : Cases 1, 2 and 3.
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Figure 14. Whirl orbits of the unbalanced dual rotor system at node z7 : Cases 1, 4 and 5.

6. CONCLUSIONS

For a large class of complex rotor systems, the DTFS gives exact and closed-form
predictions of dynamic displacements and stresses at any location. The method is capable
of modelling flexible–rigid body interactions, and the combined effects of elastic
deformations (bending, shear, torsional and longitudinal), rotary inertia, unbalanced
masses, gyroscopic forces, and non-proportional damping due to bearings. The proposd
method does not require a knowledge of comparison or admissible functions. Neither does
it need specific derivations for different shaft models and boundary conditions. By
treating different distributed and lumped components in a compact and unified form, the

T 5

The coefficients of Bearing 2 (kxx , etc. in N/m; cxx , etc. in N/m/s)

Case no. Coefficients of Bearing 2

1 The same as listed in Table 3

2 kxx =1·75×107, kyy =2·65×107, kxy = kyx =0
cxx =1·75×102, cyy =2·65×102, cxy = cyx =0

3 kxx =2·65×107, kyy =1·75×107, kxy = kyx =0
cxx =2·65×102, cyy =1·75×102, cxy = cyx =0

4 kxx , kyy , cxx and cyy are the same as in Case 1
kxy =2·65×107, kyx =1·75×107, cxy =2·65×102, cyx =1·75×102

5 kxx , kyy , cxx and cyy are the same as in Case 1
kxy =1·75×107, kyx =2·65×107, cxy =1·75×102, cyx =2·65×102
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DTFS provides a new symbolic manipulation for real engineering analysis. The accuracy
and efficiency of the method has been verified in the examples.

Some observations from the numerical simulation are as follows. In estimating critical
speeds, a tapered flexible rotor can be accurately modelled by a stepped rotating beam of
a small number of segments. For a symmetric dual rotor system, an unbalanced mass can
only excite forward whirls. However, an unsymmetric bearing can dramatically change the
whirl direction and orbit of the rotor system. Additionally, if an external harmonic
excitation is not purely forward, both forward and backward whirls can be excited. In this
case, the backward and forward critical speeds of the dual rotor system are in an interlacing
relation.

The DTFS can be extended to rotors carrying flexible disks. Such systems have other
important industrial applications besides those mentioned in the introduction. Two
examples are data storage (e.g., computer disk drives) and material processing (e.g.,
circular saws). A recent study [29] shows that the distributed transfer functions of flexible
rotating disks can be obtained in a highly accurate semi-analytical form. Hence, with
flexible rotating disks treated as distributed components, a DTFS-based analysis for such
rotating systems can be similarly developed.
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